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Abstract This study develops a new approach to improve simulations of the particulate matter of
aerodynamic diameter smaller than 2.5 μm (PM2.5) in the Community Multiscale Air Quality (CMAQ)
model via assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth
(AOD) retrievals using the Gridpoint Statistical Interpolation (GSI) system. In contrast to previous studies
that only consider errors due to transport, our computation of the background error covariance matrix
incorporates uncertainties in anthropogenic emissions. To understand the impact of this approach, three
experiments (one background and two assimilations) are performed over the contiguous United States
(CONUS) from 15 July to 14 August 2014. The background CMAQ experiment significantly underestimates
both the MODIS AOD and surface PM2.5 levels. MODIS AOD assimilation pushes both the CMAQAOD and
surface PM2.5 distributions toward the observed distributions, but CMAQ still underestimates the
observations. Averaged over CONUS, the two assimilation experiments with and without including the
anthropogenic emission uncertainties improve the correlation coefficient between the model and
independent observations of PM2.5 by ~67% and ~48%, respectively, and reduces the mean bias by ~38% and
~10%, respectively. The assimilation improves the model performance everywhere over CONUS, except the
New York and Wisconsin, where CMAQ overestimates the observed PM2.5 during nighttime after
assimilation likely because of overcorrection of aerosol mass concentrations by the AOD assimilation.
Future work should incorporate uncertainties in other processes (biomass burning and biogenic emissions,
deposition, chemistry, transport, and boundary conditions) to further enhance the value of assimilating
spaceborne AOD retrievals.

1. Introduction

The U.S. Environmental Protection Agency (EPA) has defined the fine particulate matter (PM), that is, the
PM of less than 2.5 μm in aerodynamic diameter (PM2.5), as one of the six criteria air pollutants under the
Clean Air Act. Elevated PM2.5 levels adversely affect human health, can cause premature mortalities via
acute respiratory and cardiovascular diseases (Burnett et al., 2014; Fann et al., 2012), and may result in
economic losses due to health care expenditure, missed school and work, and lost potential incomes from
premature deaths. While adverse health impacts of elevated PM2.5 levels have been long known, a recent
study showed that long‐term exposure to PM2.5 of especially the elderly population at levels even below
the National Ambient Air Quality Standard (NAAQS) of 12 μg/m3 (for annual average) can also cause
premature deaths (Di et al., 2017).

The aforementioned impacts of PM2.5 can be mitigated if vulnerable groups and individuals receive
timely information about anticipated PM2.5 pollution episodes so that they can take actions (e.g., reduce
outdoor activities) to limit their exposure. The positive effects of such timely information have been
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demonstrated in previous studies. For instance, 57% of people with lifetime asthma and 51% of the peo-
ple without asthma are reported to avoid exposure to air pollution in six U.S. states (Colorado, Florida,
Indiana, Kansas, Massachusetts, and Wisconsin) by reducing their outdoor activities following air quality
alerts from their healthcare professionals (Wen et al., 2009). Air quality alert announcements in Canada
are also reported to reduce asthma‐related emergency department visits by about 25% (Chen et al., 2018).

The responsibility of providing the timely information lies with the air quality managers across the United
States, who provide this information by analyzing air quality and weather observations along with
Numerical Weather Predictions (NWPs) and PM2.5 guidance from the National Air Quality Forecasting
Capability (NAQFC). The NAQFC uses a state‐of‐the‐science chemistry transport model (CTM) called the
Community Multiscale Air Quality (CMAQ) model to predict PM2.5 (Lee et al., 2017). CMAQ employs
advanced numerical procedures and sophisticated algorithms to process emission inventories and parame-
terizes a variety of atmospheric physical and chemical processes to predict concentrations of air pollutants
including PM2.5. However, CTM simulations suffer from both systematic (i.e., biases) and random errors
due to a number of factors including numerical approximations, inadequate understanding of some of the
processes that control the spatial and temporal distribution of air pollutants, inaccuracies in initialization
of the physical and chemical atmospheric state, and uncertainties in the emission inventories (Russell &
Dennis, 2000). While continuous efforts are being made to improve the representation of processes control-
ling PM2.5 in CMAQ (e.g., Appel et al., 2013, 2017; Fahey et al., 2017; Nolte et al., 2015) and emission inven-
tories are updated by the EPA every 3 years, recent developments have shown that improving initialization
of aerosol mass concentrations in CTMs including CMAQ via assimilation of ground‐based observations of
PM2.5 and satellite retrievals of aerosol optical depth (AOD) can significantly improve PM2.5 predictions
(e.g., Chai et al., 2017; Liu et al., 2011; McHenry et al., 2015; Pagowski et al., 2014; Saide et al., 2013;
Schwartz et al., 2012; Tang et al., 2017).

This study develops a new approach to improve CMAQ aerosol initialization and short‐term (48 hr) predic-
tions of PM2.5 via the assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) AOD retrie-
vals in the three‐dimensional variational (3DVAR) framework of the community Gridpoint Statistical
Interpolation (GSI) system (Developmental Testbed Center [DTC], 2016). Specifically, the incorporation
of anthropogenic emission uncertainties in the background error covariance (BEC) matrix represents a
novel aspect of this work. The BEC matrix plays a vital role in the variational analysis because, along with
the observation errors, it determines how much of the innovation (the difference between the model and
observed value) actually becomes the analysis increment and how the analysis increment is spread to neigh-
boring grid points both horizontally and vertically. The BEC matrix could be calculated by knowing the dif-
ference between the modeled and true values of the analysis variables (aerosol chemical composition in this
case). However, lack of knowledge of the true values of the analysis variables and the enormous size
(~108 × 108 = ~1016 elements in our case) of the BEC matrix inhibits explicit calculation of the BEC matrix.
Thus, its calculation needs to be simplified and several methods have been developed for this purpose.

The GSI system uses statistical parameters (variances, and horizontal and vertical correlation length scales)
to approximate the convolution of the BEC matrix. These are generated using two model simulations initi-
alized at different times but valid at the same time (e.g., Parrish & Derber, 1992; Wu et al., 2002). In previous
studies of MODIS AOD assimilation (e.g., Liu et al., 2011; Saide et al., 2013; Tang et al., 2017), the two CTM
simulations have differed only in terms of meteorological initialization, and the resulting background errors
do not account for many important processes that can introduce large errors in regional air quality simula-
tions (e.g., anthropogenic, biomass burning and biogenic emissions, chemical mechanisms, dry and wet
deposition, and boundary conditions). Among these sources, anthropogenic emissions are one of the largest
contributors to air quality. Therefore, we examine how incorporating anthropogenic emission uncertainties
in the BECmatrix will affect CMAQ initialization and short‐term PM2.5 predictions following assimilation of
MODIS AOD retrievals. The manuscript is organized as follows. Section 2 provides details of the CMAQ
model configuration, the GSI data assimilation system, and the MODIS AOD retrievals assimilated in this
study. The observation data sets used for model evaluation are described in section 3. The experimental
design, GSI adjustment of CMAQ AOD and aerosol chemical composition, and impact of AOD assimilation
on CMAQ initialization, aerosol analyses, and 48‐hr PM2.5 predictions are discussed in section 4. Results are
summarized in section 5.
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2. Materials and Methods
2.1. The CMAQ Configuration

This study uses the off‐line version 5.1 of the CMAQ model (Byun &
Schere, 2006) to simulate aerosol chemical composition, mass concentra-
tions, and optical properties. We replicate the NAQFC domain settings by
using the same model domain, map projection, and horizontal and verti-
cal grid spacing to make our developments relevant to operations. The
CMAQ domain is defined on a Lambert Conformal map projection cen-
tered at (40°N, 97°W) with Arakawa C‐grid staggering and a horizontal
grid spacing of 12 km in both the longitudinal and latitudinal directions
(Figure 1). The domain has 442 grid points in the longitudinal direction,
265 grid points in the latitudinal direction, and 42 vertical levels extending
from the surface to about 20 km.

The meteorological fields required to drive CMAQ are also simulated at
12‐km grid spacing using the Weather Research and Forecasting (WRF)

model (Skamarock et al., 2008) that uses a larger domain than CMAQ with 481 and 369 grid points in the
longitudinal and latitudinal directions, respectively, and 43 vertical levels stretching from the surface to
50 hPa. The static geographical fields such as the terrain height, soil properties, vegetation fraction, land
use/vegetation, albedo, and erodible land fraction are interpolated from the U.S. Geological Survey data to
the WRF domain using the WRF preprocessing system (WPS). The physical parameterizations used for
the WRF model are listed in Table 1. The initial and boundary conditions for the meteorological fields are
obtained from the 6 hourly North America Mesoscale 12‐km analysis produced at the National Centers
for Environmental Prediction. The WRF simulations use a time step of 15 s and save all the relevant meteor-
ological parameters every hour to drive CMAQ, which are then interpolated to the CMAQ domain using ver-
sion 4.3 of the meteorology‐chemistry interface processor. The vertical diffusion and mixing in CMAQ are
represented using the Asymmetric Convective Method 2 (ACM2), and the advection and diffusion scheme
follows Byun (1999).

The gas‐phase chemistry is represented by the Carbon Bond mechanism‐2005 (CB‐05) with an updated
toluene chemistry (Whitten et al., 2010), whereas aerosol chemistry is represented using the AERO6module.
Aerosol processes in CMAQ are represented using three lognormal modes, namely, Aitken, accumulation,
and coarse modes (Binkowski & Roselle, 2003). The AERO6 includes specification of trace metals (Appel
et al., 2013; Reff et al., 2009) and source‐specific ratios of organic mass to organic carbon (Simon & Bhave,
2012). Inorganic aerosols in the Aitken and accumulation modes are assumed to be in thermodynamic equi-
librium, calculated using version II of the ISORROPIA thermodynamic equilibrium module (Fountoukis &
Nenes, 2007). The gas‐particle partitioning between the gas phase and coarse mode particles is treated dyna-
mically following Kelly et al. (2010). The secondary organic aerosol formulation from various gas‐phase pre-
cursors is calculated following Carlton et al. (2010).

Anthropogenic emissions of trace gases and aerosols are based on the EPA
National Emission Inventory (NEI) for the year 2011. Biogenic emissions
are represented using the Biogenic Emissions Inventory System (BEIS)
version 3.13. Biomass burning emissions of aerosols and trace gases
within the model domain are estimated using the U.S. Forest Service
Bluesky Framework utilizing the National Oceanic and Atmospheric
Administration (NOAA) HazardMapping System to geographically locate
and estimate the strength of wildfires.

We generated 24‐hr CMAQ forecasts of aerosols for the period of 10 July
to 14 August 2014. CMAQ forecast on 10 July 2014 used idealized initial
conditions for all the chemical species. The initial conditions for all
other CMAQ forecasts were based on the previous day's CMAQ run.
Similar to the NAQFC, lateral boundary conditions for CMAQ chemical
fields are represented using Goddard Earth Observing System (GEOS)‐
Chem (Lee et al., 2017; Tang et al., 2009) simulated monthly median

Figure 1. The Weather Research and Forecasting (WRF) and Community
Multiscale Air Quality (CMAQ) modeling domains with terrain elevation.
The white solid lines mark the location of CMAQ domain boundaries.

Table 1
List of the Selected WRF Atmospheric Physical Parameterizations Used in
This Study

Atmospheric process Parameterization

Cloud microphysics WRF Single‐moment 6‐class
(Hong & Lim, 2006)

Long‐wave radiation Dudhia short‐wave scheme (Dudhia, 1989)
Short‐wave radiation Rapid Radiative Transfer Model (RRTM;

Mlawer et al., 1997)
Surface layer MM5 similarity (Zhang & Anthes, 1982)
Land surface model Unified Noah Land surface model

(Tewari et al., 2004)
Planetary boundary layer Yonsei University (YSU)
Cumulus Kain‐Fritsch (Hong et al., 2006; Kain, 2004)

Note. WRF, Weather Research and Forecasting.
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concentrations. The CMAQ simulations use a time step of 6 min for chemistry simulations, and the out-
put is saved every hour for further analysis.

2.2. Chemical Data Assimilation System

This study uses the 3DVAR scheme of the community GSI system (version 3.5) for assimilating the MODIS
AOD retrievals in CMAQ. The 3DVAR scheme blends information from the observations and a model back-
ground to find an optimal analysis state by minimizing a near‐quadratic cost function as defined in equa-
tion (1) following DTC (2016).

J xð Þ ¼ 1
2

x−xbð ÞTB−1 x−xbð Þ þ 1
2

H xð Þ−yð ÞTR−1 H xð Þ−yð Þ (1)

where x represents the state vector that consists of aerosol chemical composition and meteorological vari-
ables required in AOD calculation, xb represents the a priori information about x and is commonly referred
to as background, B is the BEC matrix, H is the forward operator that transforms CMAQ aerosol chemical
composition to AOD, y represents the MODIS AOD retrievals, and R is the observation error covariance
matrix. The two terms on the right‐hand side of equation (1) represent the deviation of the analysis state
from the model background and observations within the constraints of background and observation errors,
respectively. At the analysis point (x = xa), the ∇xJ(x) becomes zero. The background and analysis fields are
generated using the CMAQ configuration described in section 2.1, and the rest of the key components of the
GSI system are discussed in following sections.
2.2.1. Control and State Variables
Two different approaches have been used to define control variables (variables that are adjusted by AOD
assimilation) in previous MODIS AOD assimilation studies. The first approach defines individual aerosol
species as control variables (e.g., Liu et al., 2011; Schwartz et al., 2012; Tang et al., 2017), and the second
approach uses the total mass per aerosol size bin as control variables (e.g., Benedetti et al., 2009; Saide
et al., 2013). We follow the second approach here because it reduces the number of control variables from
62 to 3, which in turn reduces the cost of both the BEC statistics calculation and iterative optimization,
and also inhibits the accumulation of changes to aerosol species with the largest contribution to total aerosol
mass. The three control variables are named as AMASSI, AMASSJ, and AMASSK representing the total
aerosol mass for the Aitken, Accumulation, and Coarse modes. AOD assimilation generates analysis incre-
ments for these three control variables, which are then distributed to the individual aerosol chemical com-
ponents in GSI using the percentage contribution of individual species to total aerosol mass per mode in the
model background state. All of the CMAQ aerosol species, the three control variables, and other variables
(temperature, pressure, relative humidity, and grid thickness) that are required for the AOD calculation
from CMAQ aerosol chemical composition constitute the state vector in the GSI.
2.2.2. The BEC Matrix
We employed the National Meteorological Center (Parrish & Derber, 1992) method of a community
Generalized Background Error (GEN_BE) for calculating the BEC statistical parameters, similar to previous
chemical data assimilation studies involving MODIS AOD retrievals (Liu et al., 2011; Saide et al., 2013;
Schwartz et al., 2012). GEN_BE uses the difference between two forecasts valid at the same time but initia-
lized at different times (e.g., 00 Z and 06 Z forecasts in our case) to represent a sample of model background
errors. GEN_BE calculation involves three stages listed below.

• Stage 1: Calculate and store difference between 30 pairs of CMAQ forecasts valid at the assimilation times
(15 Z, 18 Z, and 21 Z). The 30 pairs correspond to daily forecasts generated for the period of 15 July to 14
August 2014.

• Stage 2: Remove the temporal mean from the differences generated in Stage 1.
• Stage 3: This stage calculates the statistical parameters, that is, variance, horizontal, and vertical length

scales to model the BECs. The horizontal length scale (HLS) is based on the ratio of the variance of a field
(C) and the variance of its Laplacian using the following equation.

HLS ¼ 8*Variance Cð Þ
Variance ∇2C

� �
 !1=4

(2)

where C represents the aerosol mass concentrations here. The vertical length scale for each sigma level (l) is
calculated using the following equation:
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VLS ¼ 1
abs 2−vcor l½ �−vcor lþ 1½ �ð Þ
� �1=2

(3)

where vcor[l] and vcor[l + 1] represent the vertical error covariances for the levels l and l + 1, respectively.
Further details regarding the derivation of these formulas to calculate horizontal and vertical length scale
can be found in Wu et al. (2002).

In this study, two 24‐hr CMAQ forecasts initialized at 00 Z and 06 Z with meteorology input from two dif-
ferent WRF forecasts are generated every day from 15 July to 15 August of 2014. We select a 06 Z initializa-
tion time for the second simulation in order to reduce the effect of initial conditions on the CMAQ
simulations at 15 Z that corresponds to the first (Terra satellite) MODIS overpass of the day over the
United States. These WRF forecasts are initialized 6 hr before the CMAQ forecasts, that is, at 18 Z of the pre-
vious day for the 00 Z CMAQ forecast and at 00 Z for the 06 Z CMAQ forecast. The first 6 hr of both WRF
forecasts are discarded as model spin‐up. The CMAQ forecasts valid at the MODIS (both Terra and Aqua)
overpass time, that is, 15 Z, 18 Z, and 21 Z are then fed to the GEN_BE to calculate the BEC
statistical parameters.

We generated two sets of the BEC statistical parameters. The first set is called MET_BE because the two
CMAQ forecasts differed only in WRF meteorological input. The second set is same as the first one but
we added a spatially varying perturbation factor to the NEI anthropogenic emissions for the 06 Z CMAQ
forecast. This perturbation factor is estimated by comparing the NEI 2011 anthropogenic emissions esti-
mates with those available from four other global emission inventories, namely, the Emissions Database
for Global Atmospheric Research for Hemispheric Transport of Air pollution (EDGAR‐HTAP) version 2,
Representative Concentration Pathway 8.5 (RCP8.5), PEGASOS (Pan‐European Gas‐Aerosols‐Climate
Interaction Study ‐ Atmospheric Chemistry and Climate Change Interactions emission inventory), and
ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short‐lived Pollutants) emission inventories.
EDGAR‐HTAP provides global emissions of air pollutants at 0.1° × 0.1° resolution, while MACCity,
PEGASOS, and ECLIPSE provide the emissions at 0.5° × 0.5° resolution. All these emission inventories
are mapped to the CMAQ domain using a mass conserving anthropogenic emission preprocessor called
anthro_emis (https://www2.acom.ucar.edu/wrf‐chem/wrf‐chem‐tools‐community). The comparison of
NEI with these emission inventories is demonstrated with an example of anthropogenic primary organic car-
bon emissions over the CMAQ domain (Figure 2). In general, NEI emissions are on the low end compared to
the global emission inventories. The emission perturbation factor is calculated by first subtracting the NEI
emissions from each of the global emission inventories and then averaging the difference of four values.
The spatial distribution of the perturbation factor looks very similar to the RCP85, PEGASOS, and
ECLIPSE emissions inventories, which show similar spatial distributions but higher values than the
EDGAR‐HTAP. Similar maps of perturbation factors are generated for all the species and added to the
NEI anthropogenic emissions for theMET+EMIS_BE case. Similar differences are seen for other trace gases
and aerosols. The inconsistencies in activity data sets (e.g., fuel consumption) and differences in emission
factors used in emission estimation algorithms aremainly responsible for large discrepancies among the cur-
rent emission inventories (Granier et al., 2011).

We examine the influence of including anthropogenic emission uncertainties in the calculation of BEC sta-
tistical parameters by comparing the accumulation mode aerosol (AMASSJ) variances for both the MET_BE
and MET + EMIS_BE cases (Figure 3). The variances for both the cases show a similar vertical distribution
with highest values near the surface that decrease with altitude. However, we notice a larger increase in the
variance in the lowest 20 model levels (i.e., up to about 3 km) with the inclusion of anthropogenic emission
uncertainties. For instance, the variance increases from 0.5–1.5 μg/m3 to 3–10 μg/m3 for the areas between
and 25–50°N below 1.5‐km altitude. This is not surprising considering that emission perturbations are
applied only in the lowest model layer, and we expect these perturbations to be well mixed within the pla-
netary boundary layer (PBL). The variance above the 20th model level is similar in the MET_BE and
MET + EMIS_BE cases. This is also expected as variability in the distribution of air pollutants in the free tro-
posphere is often strongly driven by inflow from the domain boundaries (e.g., Kumar et al., 2015; Pfister
et al., 2011), and our setup does not account for uncertainties in boundary conditions. The AMASSI standard
deviation also shows changes similar to the AMASSJ variance for the MET + EMIS_BE case. However, we
see negligible changes in AMASSK variance between MET_BE and MET + EMIS_BE (Figure S1 in the
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supporting information) mainly because coarse mode aerosols are mostly emitted from natural sources
(desert dust and sea‐salt). Therefore, accounting for uncertainties in anthropogenic emissions does not
affect the AMASSK variances significantly. The variance values are the highest for AMASSJ in the
MET + EMIS_BE experiment and for AMASSK in the MET_BE experiment.

The GSI makes an assumption which smooth outs the spatial variability of emissions. GSI assumes that the
HLSs vary only by altitude and latitude (in 1° bins) and the vertical length scales vary only by altitude. For
calculation of the HLSs, aerosol concentrations from all the longitudes within 1° latitude bins are used in

Figure 3. Comparison of the AMASSJ Background Error (BE) variances for [a] MET_BE and [b] MET+EMIS_BE cases.

Figure 2. Spatial distribution of anthropogenic primary organic carbon emissions over the Community Multiscale Air Quality (CMAQ) domain from five different
inventories. The perturbation factor derived by comparing National Emission Inventory (NEI) with these emission inventories is shown in the bottom rightmost
panel.
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equation (2). Similarly, data from all longitudes and latitudes at every level are used to calculate the vertical
length scales. The horizontal and vertical length scales are very similar between the MET_BE and
MET + EMIS_BE cases, with values in the range of 1–3 grid points likely because changes in the variances
and gradients in the MET + EMIS_BE relative to MET_BE cancel each other out.
2.2.3. MODIS AOD Retrievals and Observations Errors
This study uses the MODIS AOD from the National Aeronautics and Space Administration (NASA) Neural
Network Retrieval (NNR; Randles et al., 2017) that provides observationally constrained AOD retrievals
designed to better fit the Aerosol Robotic Network (AERONET) observations to provide unbiased and assim-
ilation ready products. The assimilation of NNR is shown to reduce errors in PM2.5 and AOD simulations at
more stations compared to the operational collection 5.1 MODIS dark‐target retrievals (Saide et al., 2013).
The operational GEOS‐5 (Rienecker et al., 2008) aerosol assimilation system (Global Modeling and
Assimilation Office, 2017) and MERRA‐II reanalyses (Randles et al., 2017) also assimilates the NNR retrie-
vals. The NNR uses slightly different predictors over the land and the ocean. Top of the atmosphere reflec-
tance, cloud fraction (<85%), solar and sensor angles, glint, and GEOS‐5 surface wind speeds are used as
predictors for the ocean retrievals. For the land retrievals, the predictors used include top of the atmosphere
reflectance, cloud fraction (<85%), climatological albedo (only when it is lower than 0.25), and solar and sen-
sor angles. MODIS AOD retrieval is not used as a predictor in the NNR retrievals. The NNR also provides
550‐nm AOD at 10‐km resolution like MODIS Level 2 operational retrievals (Global Modeling and
Assimilation Office, 2017). The observation errors are specified following Remer et al. (2005) as
(0.03 + 0.05 * AOD) and (0.05 + 0.15 * AOD) over the ocean and the land, respectively. The uncertainties
in the forward operator design may also affect the observation error covariance matrix as discussed later in
section 4.1. These observational errors have also been used in previous MODIS AOD assimilation experi-
ments (e.g., Liu et al., 2011; Schwartz et al., 2012). MODIS overpasses corresponding to 15 Z, 18 Z, and 21
Z retrieve AOD over parts of the United States, but the spatial coverage is highest at 18 Z (Figure S2). A total
of 14,882 MODIS AOD retrievals are assimilated into CMAQ during 15 July to 14 August 2014.
2.2.4. The Forward and Adjoint Operators
A simple forward operator based on the parameterization of Malm and Hand (2007) is developed to convert
CMAQ aerosol chemical composition into AOD for a direct comparison with MODIS AOD retrievals. This
parameterization calculates the AOD following equations (2) and (3) and is also used as one of the two vis-
ibility calculation methods in CMAQ.

CMAQAOD ¼ ∑
N

i¼1
βexti×dz ið Þ (4)

β exti ¼ 0:003×f RHð Þ× ammonium nitrate½ � þ ammonium sulfate½ �f g þ 0:004× organic mass½ �
þ 0:010× Light−absorbing carbon½ � þ 0:001× fine soil½ � þ 0:0006× coarse soil½ �
þ 0:00137×f RHð ÞSS× sea salt½ �f g : (5)

where i = 1, 2 … N represents the vertical layers in CMAQ, βexti represents the extinction coefficient for the
layer i, values in square brackets represent mass concentrations of different aerosol chemical compounds,
and f(RH) and f(RH)SS represents a relative humidity correction factor that accounts for hygroscopic growth
of sulfate‐nitrate‐ammonium and sea‐salt aerosol components, respectively. f(RH) and f(RH)SS are deter-
mined from look‐up tables, and their variations with RH are shown in Figure S3. Extinction due to other
aerosol components is assumed to be invariant with RH.

The tangent linear (TL) and adjoint (AD) of the forward operator are generated using the automatic differ-
entiation tool TAPENADE (http://www‐sop.inria.fr/tropics/tapenade.html). Here the forward operator is
the TL itself. The resulting TL code is validated using the Taylor‐Lagrange formula:

Q C þ h*Cð Þ−Q Cð Þ
P h*Cð Þ ¼ 1 (6)

where P is the TL code to be tested against the forward operator code Q. C represents CMAQ aerosol chemi-
cal composition, and h is the perturbation factor, which is varied from 10−1 to 10−9, and the ratio of the finite
difference derivative calculated using the forward operator Q code (numerator in equation (4)) to the deri-
vative calculated by the TL code (denominator in equation (4)) is found to be 1 for all values of h.
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The AD code needs to be tested because it transforms the changes in J with respect to AOD back to changes
with respect to aerosol mass concentrations. The AD code is tested using the following equation:

<P C þ h*Cð Þ;P C þ h*Cð Þ> ¼ < C þ h*Cð Þ; PTP C þ h*Cð Þ> (7)

Equation (7) states that the inner product of the derivatives generated using the TL code (left‐hand side)
must be equal (in limits of the machine precision) to the inner product of the adjoint derivative and original
perturbation (right‐hand side). This test was also performed successfully for h values ranging from 10−1 to
10−9 and for all aerosol species.
2.2.5. Cost Function Minimization
The gradient of cost function becomes zero at the minimum of the cost function. However, the analytical
solution of∇x J= 0 is not possible because of the large rank of B and thus numerical approaches are required
to minimize the cost function. GSI preconditions its cost function by defining a new variable z = B−1x. This
eliminates the requirement to invert B in minimizing the cost function. ∇z J (=B ∇x J) and ∇x J are mini-
mized simultaneously using an iterative conjugate gradient method. The minimization process is described
in detail in DTC (2016). The convergence threshold for the GSI solution is set to 10−9, and the maximum
number of iteration set to reach this convergence threshold is set to 50. We find that the GSI reached conver-
gence in 11–47 iterations for all the assimilation cases.

2.3. Experimental Design

We conducted three CMAQ experiments to assess the impact of including anthropogenic emission uncer-
tainties on CMAQ initialization and short‐term PM2.5 predictions due to assimilation of MODIS AOD.
The first background CMAQ experiment does not assimilate MODIS AOD retrievals and is thus named
BKG. The other two experiments are named MET_BE and MET + EMIS_BE as they assimilate MODIS
AOD with the BEC statistics corresponding to the aforementioned two sets of the BEC statistics. Figure 4
depicts the setup used every day to assimilate MODIS AOD in CMAQ for the period of 15 July to 14
August 2014. Each day, we use automated scripts to conduct four CMAQ runs and three GSI runs. The first
CMAQ run starts at 00 Z and ends at 15 Z and is followed by the assimilation of MODIS AOD at 15 Z. The
analysis state produced by the 15 Z GSI run provides initial conditions for 15–18 Z CMAQ forecast. The pro-
cedure is repeated for 18–21 Z and 21–24 Z CMAQ runs and 18 Z and 21 Z GSI runs. The CMAQ output at 24
Z serves as the initial conditions for the next day's 00–15 Z CMAQ run.

3. Evaluation Data Sets

CMAQ‐simulated PM2.5 mass concentrations are evaluated against surface PM2.5 measurements obtained
from the Air Quality System (AQS) data of the EPA. The AQS data contains all the PM2.5 measurements
that EPA collects under the national ambient air monitoring program. Different tribal, state, and local
agencies collect these data sets and perform several quality control tests before archival on the AQS data
website (https://www3.epa.gov/ttn/amtic/quality.html). CMAQ aerosol chemical composition is first con-
verted into PM2.5 concentrations that can be compared directly with the EPA measurements using the

Figure 4. Schematic of the Gridpoint Statistical Interpolation‐Community Multiscale Air Quality (GSI‐CMAQ) setup for
assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals in
CMAQ for a typical day.
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CMAQ combine utility, and then paired with the observed values in space and time using the CMAQ
sitecmp utility. CMAQ PM2.5 concentrations are estimated using the sharp‐cut PM2.5 inlet method
(Jiang et al., 2006) that calculates the volume fraction of each mode (Aitken, Accumulation, and
Coarse) below 2.5‐μm diameter. While EPA measured PM2.5 at 1981 sites across the United States during
July–August 2014, we considered only 659 sites in our analysis to ensure that all the measurement sites
used in the evaluation had at least 50% data availability, that is, 384 hourly measurements during 15 July
to 14 August 2014. Daily aerosol chemical composition measurements at 145 sites from the EPA Chemical
Speciation Network are also used to evaluate the CMAQ aerosol chemical composition. Additionally, we
have obtained the planetary boundary layer height (PBLH) derived for 75 sites within the model domain
from the Integrated Global Radiosonde Archive (IGRA; Durre et al., 2006; Durre & Yin, 2008). These esti-
mates are based on the radiosonde observations and are reported to have an uncertainty of a few 100 m
(Seidel et al., 2010).

4. Results and Discussion
4.1. GSI Adjustment of CMAQ AOD and Aerosol
Chemical Composition

The assimilated MODIS AOD retrievals collocated with CMAQ AOD for
all three CMAQ experiments are saved in the GSI runs at all the assimila-
tion times. The frequency distributions of collocated MODIS and CMAQ
AOD for BKG, MET_BE, and MET + EMIS_BE cases are compared in
Figure 5 (top panel). CMAQ AOD with and without assimilation signifi-
cantly underestimates the MODIS AOD, but as expected, the assimilation
brings the CMAQ AOD distribution closer to the MODIS AOD distribu-
tion. The average values of CMAQ and MODIS AOD along with one stan-
dard deviation in the average values are shown in Table 2, and the
correlation coefficients and the mean biases (MBs) are shown in

Figure 5. Frequency distributions of collocated Moderate Resolution Imaging Spectroradiometer (MODIS) and Community Multiscale Air Quality (CMAQ) aero-
sol optical depth (AOD) at 550 nm over the model domain for all the CMAQ experiments and at all assimilation times (top panel). Histograms of the correlation
coefficient and mean bias for the three CMAQ experiments (bottom panel). The vertical bars on the histograms show the bootstrap confidence intervals.

Table 2
Domain‐Wide Statistical Comparison of Collocated CMAQ and MODIS
AOD at 15 Z, 18 Z, and 21 Z for All the CMAQ Experiments

Time MODIS
CMAQ
(BKG)

CMAQ
(MET_BE)

CMAQ
(MET + EMIS_BE)

15 Z 0.22 ± 0.17a 0.07 ± 0.05 0.09 ± 0.05 0.13 ± 0.07
18 Z 0.19 ± 0.22 0.05 ± 0.05 0.07 ± 0.06 0.10 ± 0.08
21 Z 0.16 ± 0.18 0.04 ± 0.03 0.05 ± 0.04 0.08 ± 0.05

aMean ± standard deviation; AOD, aerosol optical depth; CMAQ,
Community Multiscale Air, Quality; MODIS, Moderate Resolution
Imaging Spectroradiometer.
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Figure 5 (bottom panel). For the MET_BE andMET + EMIS_BE experiments, the assimilation increases the
correlation coefficient between the MODIS and CMAQ AOD by 0.20–0.22, and 0.39–0.54, respectively, and
reduces the MB by 0.01–0.02 and 0.04–0.06, respectively. The bootstrap confidence intervals (5–95% limits of
the distribution obtained by computing a specific statistical metric over a data set) show that the decreases in
MB and the increase in correlation coefficient in both the assimilation experiments are statistically
significant. The improvements in the MET + EMIS_BE are also statistically significant compared to the
MET_BE experiment. To examine the robustness of improvement in AOD, we compared CMAQ
simulated AOD for the BKG and MET + EMIS_BE experiment with the Multi‐angle Imaging
Spectroradiometer (MISR) Level 2 AOD retrievals over the model domain (Figure S4). MISR retrievals are
not available for the period of 15 July to 1 August 2014, and thus, the comparison shown here is
performed for 2 August to 14 August 2014. A total of 76,003 MISR retrievals are included in the
comparison. The assimilation of MODIS AOD pushes the CMAQ AOD distribution closer to the MISR
AOD distribution, but CMAQ still underestimates the MISR AOD similar to CMAQ‐MODIS comparison
(see Figure 5). Average MISR AOD is estimated to be 0.17 ± 0.13, and the corresponding CMAQ AOD in
the BKG and MET + EMIS_BE experiments are estimated to be 0.06 ± 0.06 and 0.09 ± 0.08, respectively.
The correlation coefficient (r) between CMAQ and MISR AOD improved also from 0.28 in the BKG
experiment to 0.49 in the MET + EMIS_BE experiment.

The increase in correlation coefficient in both the MET_BE and MET + EMIS_BE experiments is higher
than that (0.03–0.06) reported in previous studies (e.g., McHenry et al., 2015; Schwartz et al., 2012) employ-
ing a variational data assimilation scheme over a domain similar to the one used here. Previous studies also
reported a reduction in the MB of 0.03–0.07 (McHenry et al., 2015; Schwartz et al., 2012; Tang et al., 2017)
that is higher than the MET_BE experiment but is comparable for the MET + EMIS_BE experiment. The
assimilation of MODIS AOD using a different method called Optimal Interpolation (OI) produces larger
increments in CMAQAOD (e.g., Tang et al., 2017; Chai et al., 2017). Tang et al. (2017) attributed larger incre-
ments in the OI than the GSI to the use of stronger background errors in the OI. A similar behavior is found
here, where larger departures from the background are found forMET + EMIS_BE compared toMET_BE as
larger standard deviation values are used in MET + EMIS_BE (Figure 3) generating a closer fit to the obser-
vations being assimilated (Figure 5).

The GSI translates changes in CMAQ AOD to the AMASSI, AMASSJ, and AMASSK because we are using
total aerosol mass per mode as control variables. The analysis increments in the lowest model layer
AMASSI, AMASSJ, and AMASSK due to the assimilation of MODIS AOD at 18 Z averaged over the whole
study period for the MET_BE and MET + EMIS_BE experiments are shown in Figure 6. MODIS AOD

Figure 6. Analysis increments in surface layer AMASSI, AMASSJ, and AMASSK averaged over the whole study period for both theMET_BE andMET+ EMIS_BE
experiments at 18 Z. Note different color scale used for AMASSI.
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assimilation mostly leads to positive increments in aerosol mass for all the modes with the highest incre-
ments in AMASSJ. Analysis increments in both AMASSI and AMASSJ are much larger for the
MET + EMIS_BE experiment compared to MET_BE. For instance, AMASSI increments increase from
0.001–0.002 μg/m3 in the MET_BE experiment to more than 0.005 μg/m3 in MET + EMIS_BE over many
parts of the domain. Similarly, AMASSJ for MET + EMIS_BE is much larger (1–6 μg/m3) compared to the
MET_BE experiment (<1 μg/m3) especially in Oregon, Washington, Idaho, Montana, North Dakota,
South Dakota, Nebraska, Minnesota, Wisconsin, and the Great Lakes. Larger increments in the northwest
contiguous United States in the MET + EMIS_BE experiments is also in contrast with Schwartz et al.
(2012), who found little improvement in aerosol mass concentrations after assimilation of MODIS AOD.
The differences in AMASSI and AMASSJ analysis increments between the MET_BE and
MET + EMIS_BE are higher for northern CONUS because of larger difference between the background
error variances for the two experiments at northern latitudes (see Figure 3). The AMASSK analysis incre-
ment for the MET + EMIS_BE experiment is smaller compared to the MET_BE experiment. This is because
the background error standard deviation values are the highest for AMASSK in the MET_BE experiment,
and thus, GSI produces larger analysis increments in the coarse mode. Similar spatial distribution of average
analysis increments in AMASSI and AMASSJ are seen at 15 Z and 21 Z (Figures S5 and S6).

The errors in forward operator can affect themagnitude of analysis increments. To gain some insight into the
role of forward operator error, we perform a sensitivity experiment by increasing the observation error by
100% in the MET + EMIS_BE experiment. Our assumption of 100% difference in AOD estimated using dif-
ferent forward operators in based on Tang et al. (2017), who compared AOD calculated using three different
aerosol optical property calculations for 1 July 2011 18 UTC. They did not see a 100% difference everywhere
over the NAQFC domain, and thus, our assumption might be viewed as an upper bound to the contribution
of forward operator uncertainties to the observation error covariances. The new observation error is speci-
fied as 30% of AOD over the land and 10% over the Ocean. Figure S7 shows the effect of increasing the obser-
vation error on average analysis increments in aerosol mass concentrations for the Aitken (AMASSI),
Accumulation (AMASSJ), and Coarse (AMASSK) modes, respectively, at 18 Z. Increasing the observation
error reduces the analysis increment in theMET + EMIS_BE experiment but does not affect their spatial dis-
tribution. Similar reductions are observed in the analysis increments at 15 Z and 21 Z, respectively. Average
reductions in analysis increments due to 100% increase in observation error are estimated to be 36–40% in
both AMASSI and AMASSJ and 28–33% in AMASSK. However, the analysis increments in the
MET + EMIS_BE experiment with 100% increase in observation error are still much larger compared to
those in the MET_BE experiment even with original observation errors.

To understand how AOD changes are translated vertically, we compare vertical profiles of analysis incre-
ments averaged over the whole domain for the entire study period at 18 Z for the MET_BE and
MET + EMIS_BE experiments with the corresponding absolute values of AMASSI, AMASSJ, and
AMASSK in the BKG experiment (Figure 7). The analysis increments in AMASSI and AMASSJ peak
between model levels 10 and 13 (i.e., model layers between 1 to 1.5 km) for both the MET_BE and
MET + EMIS_BE experiments, while those in AMASSK peak at the surface. The analysis increments
approach zero above model level 25 (i.e., ~7 km), which is likely due to lack of accounting for boundary con-
dition uncertainties in our BEC matrix. The MET + EMIS_BE experiment produces larger analysis incre-
ments throughout the model atmosphere in AMASSI and AMASSJ, while MET_BE produces a larger
increment in AMASSK at all vertical levels.

The final step in the GSI is to distribute the changes from AMASSI, AMASSJ, and AMASSK to the individual
aerosol chemical components. To examine whether the AOD assimilation changes the aerosol chemical
composition in the right direction, we compare CMAQ‐simulated surface layer sulfate (SO4), nitrate
(NO3), ammonium (NH4), organic carbon (OC), elemental carbon (EC), chloride (Cl), and total PM2.5 for
the BKG, MET_BE, and MET + EMIS_BE experiments with the corresponding Chemical Speciation
Network observations (Figure 8). Among all the components, the observations show that OC has the highest
mass concentrations, followed by SO4, NH4, EC, NO3, and Cl. CMAQ simulates this order except that it
switches place of SO4 with OC. The BKG experiment underestimates the observed concentrations of all aero-
sol components. The AOD assimilation increases the concentrations of all aerosol components but pushes
the SO4 concentrations a little further than the observations and still underestimates mass concentration
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Figure 7. Vertical distribution of domain averaged analysis increments in AMASSI, AMASSJ, and AMASSK averaged over the whole study period for the MET_BE
and MET + EMIS_BE experiments at 18 Z (top panel). The corresponding absolute values of AMASSI, AMASSJ, and AMASSK in the BKG experiment are also
shown (bottom panel).

Figure 8. (top left panel) Spatial distribution of the Chemical Speciation Network (CSN) sites used for evaluating the Community Multiscale Air Quality (CMAQ)
aerosol chemical composition. (top right panel) Comparison of observed and model simulated aerosol chemical components averaged over the whole study
period for all the three CMAQ experiments. Percentage contribution of different aerosol chemical components to PM2.5 mass concentrations in the observations
and three CMAQ experiments are shown in the bottom panel. For both the model and observations, the contribution of other components is derived by
subtracting the sum of SO4, NO3, NH4, OC, EC, and Cl from the total PM2.5 mass concentrations.
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of other components. An analysis of the fractional contribution of different aerosol chemical components to
the total PM2.5 mass concentrations shows that AOD assimilation has a very small impact on the fractional
contribution of different species to PM2.5 (Figure 8, bottom panel). We notice large overestimation of the SO4

fraction and underestimation of other PM2.5 fractions in the BKG experiment. This causes the data
assimilation to apply largest increments in SO4 because it is the dominant species in the BKG experiment,
which in turn leads to overprediction of SO4 with AOD assimilation. The overestimation of SO4 could be
related to the use of older anthropogenic emissions from NEI 2011. The degradation of some of the
aerosol components after the AOD assimilation has also been reported for California (Saide et al., 2013)
as well as for CONUS (McHenry et al., 2015).

The underestimation of most of the aerosol components can be attributed to the underestimation of
emissions as well as errors in model simulations of the PBLH. To gain some insights into the model's ability
to simulate the PBLH, we compare the WRF‐simulated PBLH (that is used in CMAQ) with the IGRA‐
derived PBLH estimates at 00 Z averaged over the period of 15 July to 14 August 2014 (Figure 9). Both
the model and IGRA estimates show similar spatial distributions with lower PBLH over the eastern
United States and higher over the western US. This is because 00 Z corresponds to evening (1900–2000 local
time) in the eastern and central United States, and late afternoon (1700–1800 local time) in the western
United States. Thus, this comparison allows us to evaluate two regimes of the PBL, viz., the fully developed
PBL regime in the western United States and relatively shallower evening PBL regime in the eastern
United States.

The model significantly underestimates the IGRA PBLH in the eastern United States with biases as high as
1,000–1,500 m indicating that the PBL collapses too early in the model. We see a mixed model performance
in the central and western United States with the model overestimating the IGRA PBLH at some sites and
underestimating it at the others. However, the model biases are not as strong as they are in the eastern
United States indicating the model performs better in capturing the fully developed PBL. If the emission esti-
mates are correct, a shallower PBL in the model would lead to overestimation of modeled air pollution con-
centrations at the surface by mixing them into a smaller volume and vice versa. The shallower PBL might
also affect the formation of secondary aerosol components by affecting the kinetics of their chemical produc-
tion and dry deposition at night. However, as shown in the next section, CMAQ underestimates the PM2.5

mass concentrations throughout the day suggesting that uncertainties in emission inventories are large
enough to mask the variability in aerosol mass concentrations due to uncertainties in PBL mixing.
Another potential source contributing to the underestimation of AOD as well as aerosol mass concentrations
in CMAQ could be the lack of timely varying chemical boundary conditions. Furthermore, the representa-
tiveness errors resulting from the comparison of point observations located near a strong local source with
grid‐box model averaged values might also contribute to the model‐observation discrepancy. While the
model underestimates both the AOD and aerosol mass concentrations, the above discussion shows that data
assimilation pushes the model in the right direction with performance similar (or in some cases better) to
previous AOD assimilation studies.

Figure 9. Comparison of the Weather Research and Forecasting (WRF) simulated PBLH used in CMAQ with the Integrated Global Radiosonde Archive
(IGRA)‐derived PBLH estimates at 00 Z averaged over the period of 15 July to 14 August 2014. The difference between mean CMAQ and IGRA‐derived PBLH
estimates is also shown.

10.1029/2018JD029009Journal of Geophysical Research: Atmospheres

KUMAR ET AL. 2765



4.2. Effect of AOD Assimilation on Surface PM2.5

The collocated observed and CMAQ PM2.5 mass concentrations averaged over all the 659 sites at diurnal and
daily time scales for all the three CMAQ experiments are compared in Figure 10. It is important to distin-
guish between the daily and diurnal scales here because we are assimilating only 1–2 MODIS AOD retrieval
every day, and thus, we expect the data assimilation to improve model performance in capturing the day‐to‐
day variability rather than the diurnal variability. At both the diurnal and daily scale, CMAQ simulations
with and without assimilation significantly underestimate the observed PM2.5 mass concentrations similar
to the AOD. This behavior is in line with the previous studies where models continued to underestimate
(e.g., McHenry et al., 2015; Schwartz et al., 2012) or overestimate (e.g., Saide et al., 2013) the PM2.5 mass con-
centrations even after assimilating MODIS AOD. However, the assimilation for both the MET_BE and
MET + EMIS_BE experiments reduces the model bias with the MET + EMIS_BE experiment yielding
larger improvements.

In comparison to the observed diurnal variability, CMAQ misses the evening peak observed around 2000–
2100 hr and the monotonic decrease from 2200 to 0300 hr. The correlation coefficients between the observed
and CMAQ simulated diurnal PM2.5 cycles for the BKG,MET_BE, andMET+ EMIS_BE cases are 0.33, 0.34,
and 0.34, respectively. This indicates that data assimilation of temporally sparse, that is, 1–2 MODIS AOD
retrievals per day has little impact on the model's ability to capture diurnal variability despite significantly
reducing the model bias. In contrast, data assimilation significantly improves the correlation coefficient
for the day‐to‐day variability as reflected by an increase in correlation coefficient from 0.48 in the BKG to
0.71 (~48% improvement) in MET_BE and to 0.80 (~67% improvement) in MET + EMIS_BE. The observed
PM2.5 averaged over all the sites and at all times during 15 July to 14 August of 2014 is estimated to be
9.7 ± 7.3 μg/m3, and the corresponding CMAQ averaged values for the BKG, MET_BE, and
MET + EMIS_BE are estimated to be 4.5 ± 3.9 μg/m3, 5.0 ± 4.2 μg/m3, and 6.5 ± 5.4 μg/m3, respectively.

Figure 10. Geographic locations of the Environmental Protection Agency (EPA) PM2.5 monitoring sites used for evaluation of Community Multiscale Air Quality
(CMAQ) simulated PM2.5 mass concentrations are shown in the top left panel. The comparisons of the observed and CMAQ simulated diurnal and daily
variability of PM2.5 averaged over all the sites during 15 July to 14 August 2014 for all the three CMAQ experiments are shown in the top right and bottom panels,
respectively. Standard deviation in the average observed values range from 4.8 to 11.9 μg/m3, and those in CMAQ average value range from 2.7 to 7.5 μg/m3.
Standard deviations are not plotted in the figure to maintain clarity.
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Thus, assimilation of MODIS AOD into CMAQ reduces the MB in CMAQ surface PM2.5 from −5.2 μg/m3 in
the BKG experiment to −4.7 μg/m3 (~10% reduction) in the MET_BE experiment and to −3.2 μg/m3 (~38%
reduction) in the MET + EMIS_BE experiment. In comparison, the MB reduced by ~14% over CONUS in
McHenry et al. (2015).

In addition to the above discussed all‐site comparison, we also evaluated how the assimilation of MODIS
retrievals affects the model performance at each site in terms of the correlation coefficient, MB, and root‐
mean‐square error (RMSE). The absolute values of these statistical parameters for the BKG, MET_BE,
and MET + EMIS_BE cases are shown in Figure 11, and percentage improvements of the MET_BE and
MET + EMIS_BE experiments relative to the BKG experiment are shown in Figure 12. Large variability
in correlation coefficient values across the U.S. points toward heterogeneity in the model's ability to repro-
duce day‐to‐day variability in the observed PM2.5. The data assimilation improves the correlation coefficients
at more than 80% of the sites across the United States with larger improvements in the MET + EMIS_BE
than the MET_BE. Few sites in California, Oregon, Washington, Montana, Colorado, South Dakota,
Texas, and Florida show negative correlation coefficient in the BKG experiment. AOD assimilation turns
the negative correlation coefficient values to positive at most of these sites except at the few locations in
Texas, especially in the MET + EMIS_BE experiment. The correlation coefficient at most of the remaining
sites show values of 0.2–0.8 in the BKG experiment, which increases by more than 50% inmany cases in both
the MET_BE and MET + EMIS_BE experiments. The MB is highest (exceeding −10 μg/m3) at sites in
California, Oregon, Washington, Idaho, Montana, and Texas. The MB ranges from −2 to −8 μg/m3 at the
majority of the remaining sites. The MET_BE experiment reduces the MB by less than 20% at a large portion
of the sites, while MET + EMIS_BE reduces the MB by more than 30% at many sites with reductions as high
as 50% in several parts of the eastern United States, California, Oregon, and Washington (Figure 12). The
spatial distribution of the reduction in RMSE is similar to the MB with the MET + EMIS_BE leading to a
larger reduction.

Figure 11. Spatial distribution of correlation coefficient (CC), mean bias (MB), and root‐mean‐square error (RMSE) for all the three Community Multiscale Air
Quality (CMAQ) experiments compared to the observed values at all the AirNOW used in this study.
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To summarize the statistical evaluation results, we calculated the statistical parameters for the BKG,
MET_BE, and MET + EMIS_BE experiments for every state of the United States (Figure 13). The largest
improvements in the correlation coefficient due to the assimilation of MODIS AOD retrievals is seen in
California, Colorado, Florida, North Dakota, South Dakota, Utah, and Wyoming. There are some states
(Connecticut, Idaho, Illinois, Indiana, Maine, Michigan, New Hampshire, New York, and Vermont) where
the MET_BE experiment leads to slightly higher correlation coefficients than the MET + EMIS_BE experi-
ment. In Delaware, Montana, New Jersey, and Rhode Island, we also notice a small reduction in the correla-
tion coefficient in both the MET_BE and MET + EMIS_BE experiments relative to the BKG experiment.

The MB reduces with the assimilation of MODIS AOD retrievals in all the states except in New York and
Wisconsin, where assimilation changes the negative MB to positive particularly in the MET + EMIS_BE
experiment. The negative to a positive change of MB is also seen in Minnesota and Rhode Islands, but the
absolute magnitude of the MB is smaller with the assimilation of MODIS AOD. To understand the reason
for this negative to positive transition in the MB, we analyzed the diurnal variations in observed and
CMAQ simulated PM2.5 concentrations for New York and Wisconsin. We find that CMAQ agrees well with
the observed PM2.5 values during the daytime but overestimates the nighttime observed PM2.5. The daytime
increase in CMAQ assimilation experiments is attributed to the GSI analysis increments applied to the
CMAQ aerosol chemical composition to minimize the difference between CMAQ and MODIS AOD. The
increments last in the model even 48 hr after the assimilation (see section 4.4 for details), which along

Figure 12. Percentage improvement in correlation coefficient (CC) and reduction in mean bias (MB) and root‐mean‐
square error (RMSE) in the MET_BE and MET + EMIS_BE experiments relative to BKG experiment.
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with trapping of aerosols emitted in the shallow nighttime boundary layer leads to nighttime overestimation
of observed PM2.5 values in CMAQ. TheMB is reduced to less than−5 μg/m3 inmost of the remaining states,
but MB exceeding −5 μg/m3 despite AOD assimilation is seen in California, Colorado, Idaho, Montana,
Texas, and West Virginia. The RMSE values follow a pattern similar to the MB with reductions in all the
states except New York, Wisconsin, Rhode Islands, and Minnesota for the reason discussed above.

4.3. Impact of AOD Assimilation on 48‐hr PM2.5 Forecasts

The CMAQ simulations presented in the previous section assimilated
MODIS AOD every day at 15 Z, 18 Z, and 21 Z. Higher PM2.5 levels in
the MET_BE and MET + EMIS_BE experiments compared to the BKG
experiments from 21 Z through 00 Z to 15 Z (top right panel of Figure 10)
demonstrate that the effect of improving initial conditions via AOD assim-
ilation last for at least 18 hr. To examine the impact of AOD assimilation
beyond that, we perform 48‐hr forecasts starting from the analysis state at
21 Z every day from 15 July to 14 August 2014 for the MET + EMIS_BE
and BKG experiments. These forecasts are averaged by lead time at all
the sites for all the days and compared against the observations
(Figure 14). Higher PM2.5 levels in the MET + EMIS_BE experiment com-
pared to the BKG experiment throughout the 48 hr show that the effect of
improving aerosol initialization via assimilation of MODIS AOD retrievals
can last for 48 hr. However, the improvement decreases with time with the
first 24 hr showing the larger improvement. Similar effects of improving the
initial conditions via assimilation of MODIS AOD retrievals have been

Figure 13. State‐wide variation in correlation coefficient (CC), mean bias (MB), and root‐mean‐square error (RMSE) for the BKG, MET_BE, andMET + EMIS_BE
experiments. The numbers at the bottom of the MB plot represent the number of observation sites available in each state.

Figure 14. Evaluation of 48‐hr Community Multiscale Air Quality (CMAQ)
forecasts for the BKG and MET + EMIS_BE experiments against the
AirNOW observations.
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reported previously (e.g., Saide et al., 2013; Schwartz et al., 2012). Note that we see higher improvements in
simulated PM2.5 mass concentrations due to assimilation of MODIS AOD after the lead time of zero. This is
likely because our 48‐hr forecasts start at 21 Z and in our simulations the model soon enters into nighttime
after the assimilation. Since we start with higher initial concentrations due to AOD assimilation, trapping
of emissions within the shallower nighttime boundary layer further enhances the concentrations. This feature
of the model is also noticed in the BKG experiment. Another potential contribution could be from enhanced
contribution of advection at the observation sites because AOD assimilation increases the aerosol concentra-
tions everywhere in the domain.

5. Conclusions

This study developed a new approach to assimilate MODIS AOD retrievals to improve initial conditions of
CMAQ, which is used by the NAQFC at NOAA to produce operational air quality predictions. The uncer-
tainties in anthropogenic emissions are accounted for in the BECmatrix for the first time in a 3DVAR frame-
work. Anthropogenic emission uncertainties substantially increase the background error standard deviation
for the Aitken and Accumulation mode aerosols. To assess the value of incorporating anthropogenic emis-
sion uncertainties in the data assimilation, two sets of the BEC matrix are designed, with the first including
uncertainties only due to differences in meteorological initialization (MET_BE), and the second including
uncertainties in both the meteorological initialization and the anthropogenic emissions (MET + EMIS_BE).

Three CMAQ experiments, viz., one background experiment without assimilation and two assimilation
experiments ingesting two different BEC matrices, are conducted to understand the impact of including
anthropogenic emission uncertainties on the assimilation of MODIS AOD retrievals and PM2.5 simulations.
All the CMAQ experiments are conducted from 15 July to 14 August 2014 and are evaluated against EPA
measurements of PM2.5 mass concentrations and aerosol chemical composition. The PBL height data set
derived from radiosonde observations is also used to assess the model's ability in simulating the PBL. The
CMAQ model without assimilation significantly underestimates the MODIS AOD retrievals as well as sur-
face PM2.5 mass concentrations over the United States. Data assimilation pushes both the modeled AOD
and surface PM2.5 distributions toward the observed distributions, but CMAQ still underestimated both
the MODIS AOD and observed surface PM2.5. This behavior is in line with the previous studies assimilating
MODIS AOD with the objective of improving surface PM2.5 mass concentrations (e.g., McHenry et al., 2015;
Saide et al., 2013; Schwartz et al., 2012; Tang et al., 2017).

Model results show that accounting for uncertainties in anthropogenic emissions had a large impact on the
quality of aerosol analyses. Averaged over CONUS, the assimilation of MODIS AOD improved model's abil-
ity to simulate day‐to‐day variability in PM2.5 mass concentrations by ~48% in the MET_BE experiment and
~67% improvement in the MET + EMIS_BE experiment. The corresponding reductions in the MB are esti-
mated to be ~10% and ~38% for the MET_BE and MET + EMIS_BE experiments, respectively. MODIS AOD
assimilation improved the model performance at more than 80% of the AirNOW sites in terms of correlation
coefficient, MB, and the root mean square error with MET + EMIS_BE yielding larger improvements. We
also analyzed the model performance by state and fond that assimilation improves model performance in
all the U.S. states except New York and Wisconsin, where the background model was already closer to the
observations. Finally, we show that improving aerosol initial conditions via assimilation of MODIS AOD
retrievals can reduce biases in PM2.5 forecasts at least for 48 hr.

The improvements in PM2.5 predictions via assimilation of satellite AOD retrievals shown here suggests that
data assimilation is ready to play the same fundamental role in operational air quality predictions as it plays
in the NWP. The geostationary satellites that will provide AOD information with much higher spatial and
temporal resolution compared to the current polar‐orbiting satellite are expected to improve the forecasting
skill (Saide et al., 2014). This makes data assimilation an even more exciting prospect especially for air qual-
ity management in data void regions of the world. However, further research is also required to enhance the
capabilities of data assimilation systems particularly on improving the representation of the background
errors by incorporating major sources of errors in air quality simulations, developing unified forward opera-
tors that can handle aerosol chemical composition produced by widely used aerosol models, developing
flow‐dependent background errors via hybrid data assimilation, incorporating forward model errors in error
covariances, cross correlation of error covariances, and improving the accuracy of satellite AOD retrievals.
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Future studies should also explore feedback of chemical data assimilation on weather parameters and vice
versa (e.g., Saide et al., 2012; Semane et al., 2009), assimilation of vertical distribution of aerosols retrieved
by sensors such as CALIPSO, assimilation of multisatellite retrievals, and assimilation of aerosol chemical
composition. We refer the reader to Bocquet et al. (2015) for a detailed discussion on current and future
prospects of chemical data assimilation. Furthermore, data assimilation can be used not only to improve
the initial conditions of air quality models but also to analyze model error characteristics with the goal of
improving the representation of key atmospheric processes in atmospheric composition models similar to
the recent efforts in NWP (Lee, McQueen, et al., 2017).

References
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., et al. (2017). Description and evaluation of the

Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geoscientific Model Development, 10(4), 1703–1732. https://
doi.org/10.5194/gmd‐10‐1703‐2017

Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., et al. (2013). Evaluation of dust and trace metal estimates
from the Community Multiscale Air Quality (CMAQ) model version 5.0.Geoscientific Model Development, 6(4), 883–899. https://doi.org/
10.5194/gmd‐6‐883‐2013

Benedetti, A., Morcrette, J., Boucher, O., Dethof, A., Enge‐ len, R., Fisher, M., et al. (2009). Aerosol analysis and forecast in the European
Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. Journal of Geophysical Research, 114,
D13205. https://doi.org/10.1029/2008JD011115

Binkowski, F. S., & Roselle, S. J. (2003). Models‐3 Community Multiscale Air Quality (CMAQ) model aerosol component 1 Model
description. Journal of geophysical research: Atmospheres, 108(D6), 4183. https://doi.org/10.1029/2001JD001409

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., et al. (2015). Data assimilation in atmospheric chemistry
models: Current status and future prospects for coupled chemistry meteorology models. Atmospheric Chemistry and Physics, 15,
5325–5358. https://doi.org/10.5194/acp‐15‐5325‐2015

Burnett, R. T., Pope, C. A. III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global
burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://
doi.org/10.1289/ehp.1307049

Byun, D. W. (1999). Dynamically consistent formulations in meteorological and air quality models for multiscale atmospheric studies. Part
I: Governing equations in a generalized coordinate system. Journal of the Atmospheric Sciences, 56(21), 3789–3807. https://doi.org/
10.1175/1520‐0469(1999)056<3789:DCFIMA>2.0.CO;2

Byun, D. W., & Schere, K. L. (2006). Description of the Models‐3 Community Multiscale Air Quality (CMAQ) model: System overview,
governing equations and science algorithms. Applied Mechanics Reviews, 59(2), 51–77. https://doi.org/10.1115/1.2128636

Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G., Pinder, R. W., et al. (2010). Model representation of secondary
organic aerosol in CMAQv4.7. Environmental Science & Technology, 44(22), 8553–8560. https://doi.org/10.1021/es100636q

Chai, T., Kim, H.‐C., Pan, L., Lee, P., & Tong, D. (2017). Impact of Moderate Resolution Imaging Spectroradiometer aerosol optical depth
and AirNow PM2.5 assimilation on Community Multi‐scale Air Quality aerosol predictions over the contiguous United States. Journal of
Geophysical Research: Atmospheres, 122, 5399–5415. https://doi.org/10.1002/2016JD026295

Chen, H., Li, Q., Kaufman, J. S., Wang, J., Copes, R., Su, Y., & Benmarhnia, T. (2018). Effect of air quality alerts on human health: A
regression discontinuity analysis in Toronto, Canada. Lancet Public Health, 2(1), e19–e26. https://doi.org/10.1016/S2542‐
5196(17)30185‐7

Developmental Testbed Center (DTC) (2016). Gridpoint statistical interpolation Advanced user's guide version 3.5 (119 pp.). Retrieved from
http://www.dtcenter.org/com‐ GSI/users.v3.5/docs/index.php

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., et al. (2017). Air pollution and mortality in the Medicare population.
The New England Journal of Medicine, 376(26), 2513–2522. https://doi.org/10.1056/NEJMoa1702747

Dudhia, J. (1989). Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two–dimensional
model. Journal of the Atmospheric Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520‐0469(1989)046<3077:NSOCOD>
2.0.CO;2

Durre, I., Vose, R. S., &Wuertz, D. B. (2006). Overview of the integrated global radiosonde archive. Journal of Climate, 19(1), 53–68. https://
doi.org/10.1175/JCLI3594.1

Durre, I., & Yin, X. (2008). Enhanced radiosonde data for studies of vertical structure. Bulletin of the American Meteorological Society, 89(9),
1257–1262. https://doi.org/10.1175/2008BAMS2603.1

Fahey, K. M., Carlton, A. G., Pye, H. O. T., Baek, J., Hutzell, W. T., Stanier, C. O., et al. (2017). A framework for expanding aqueous
chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1. Geoscientific Model Development, 10(4), 1587–1605.
https://doi.org/10.5194/gmd‐10‐1587‐2017

Fann, N., Lamson, A. D., Anenberg, S., Wesson, K., Risley, D., & Hubbell, B. J. (2012). Estimating the national public health burden
associated with exposure to ambient PM2.5 and ozone. Risk Analysis, 32(1), 81–95. https://doi.org/10.1111/j.1539‐6924.2011.
01630.x

Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: A computational efficient thermodynamic equilibrium model for K+‐Ca2+‐Mg2+‐
NH4+‐Na+‐SO42—NO3—Cl—H2O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639–4659. https://doi.org/10.5194/acp‐7‐
4639‐2007

Global Modeling and Assimilation Office, (2017). Retrieved from https://fluid.nccs.nasa.gov/weather/
Granier, C., Bessagnet, B., Bond, T. C., D'Angiola, A., Denier van der Gon, H., Frost, G. J., et al. (2011). Evolution of anthropogenic and

biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change (2011), 109,
163–190. https://doi.org/10.1007/s10584‐011‐0154‐1

Hong, S.–Y., & Lim, J.‐O. J. (2006). The WRF single–moment 6–class microphysics scheme (WSM6). Journal Korean Meteor Society, 42,
129–151.

Hong, S.–Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly
Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1

10.1029/2018JD029009Journal of Geophysical Research: Atmospheres

KUMAR ET AL. 2771

Acknowledgments
We acknowledge the use of
anthro_emis tool provided by the
Atmospheric Chemistry Observations
and Modeling (ACOM) laboratory of
NCAR. We gratefully acknowledge the
funding from NASA Applied Science
Program (grant NNX15AH03G) for this
study. We would like to acknowledge
high‐performance computing support
from Cheyenne (doi:10.5065/
D6RX99HX) provided by NCAR's
Computational and Information
Systems Laboratory, sponsored by the
National Science Foundation. Data
supporting the conclusions of this paper
can be obtained here: https://doi.org/
10.5281/zenodo.2563377. The National
Center for Atmospheric Research is
sponsored by the National Science
Foundation. We thank the three
anonymous reviewers for their
constructive comments on the
manuscript.

https://doi.org/10.5194/gmd-10-1703-2017
https://doi.org/10.5194/gmd-10-1703-2017
https://doi.org/10.5194/gmd-6-883-2013
https://doi.org/10.5194/gmd-6-883-2013
https://doi.org/10.1029/2008JD011115
https://doi.org/10.1029/2001JD001409
https://doi.org/10.5194/acp-15-5325-2015
https://doi.org/10.1289/ehp.1307049
https://doi.org/10.1289/ehp.1307049
https://doi.org/10.1175/1520-0469(1999)056%3c3789:DCFIMA%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3c3789:DCFIMA%3e2.0.CO;2
https://doi.org/10.1115/1.2128636
https://doi.org/10.1021/es100636q
https://doi.org/10.1002/2016JD026295
https://doi.org/10.1016/S2542-5196(17)30185-7
https://doi.org/10.1016/S2542-5196(17)30185-7
http://www.dtcenter.org/com- &b_k;GSI/users&e_k;.v3.5/docs/index.php
https://doi.org/10.1056/NEJMoa1702747
https://doi.org/10.1175/1520-0469(1989)046%3c3077:NSOCOD%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046%3c3077:NSOCOD%3e2.0.CO;2
https://doi.org/10.1175/JCLI3594.1
https://doi.org/10.1175/JCLI3594.1
https://doi.org/10.1175/2008BAMS2603.1
https://doi.org/10.5194/gmd-10-1587-2017
https://doi.org/10.1111/j.1539-6924.2011.01630.x
https://doi.org/10.1111/j.1539-6924.2011.01630.x
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.5194/acp-7-4639-2007
https://fluid.nccs.nasa.gov/weather/
https://doi.org/10.1007/s10584-011-0154-1
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.5281/zenodo.2563377
https://doi.org/10.5281/zenodo.2563377


Jiang, W., Smyth, S., Giroux, E., Roth, H., & Yin, D. (2006). Differences between CMAQ fine mode particle and PM2.5 concentrations and
their impact on model performance evaluation in the Lower Fraser Valley. Atmospheric Environment, 40(26), 4973–4985. https://doi.
org/10.1016/j.atmosenv.2005.10.069

Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43(1), 170–181. https://doi.
org/10.1175/1520‐0450(2004)043<0170:TKCPAU>2.0.CO;2

Kelly, J. T., Bhave, P. V., Nolte, C. G., Shankar, U., & Foley, K. M. (2010). Simulating emission and chemical evolution of coarse sea‐salt
particles in the Community Multiscale Air Quality (CMAQ) model. Geoscientific Model Development, 3(1), 257–273. https://doi.org/
10.5194/gmd‐3‐257‐2010

Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., & Ojha, N. (2015). What controls the seasonal cycle of black carbon aerosols
in India? Journal of Geophysical Research: Atmospheres, 120, 7788–7812. https://doi.org/10.1002/2015JD023298

Lee, J. A., Hacker, J. P., Delle Monache, L., Kosovic, B., Clifton, A., Vandenberghe, F., & Rodrigo, J. S. (2017). Improving wind predictions
in the marine atmospheric boundary layer through parameter estimation in a single‐column model. Monthly Weather Review, 145(1),
5–24. https://doi.org/10.1175/MWR‐D‐16‐0063.1

Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., et al. (2017). NAQFC developmental forecast guidance for fine particulate
matter (PM2.5). Weather and Forecasting, 32(1), 343–360. https://doi.org/10.1175/WAF‐D‐15‐0163.1

Liu, Z., Liu, Q., Lin, H.‐C., Schwartz, C. S., Lee, Y.‐H., & Wang, T. (2011). Three‐dimensional variational assimilation of MODIS aerosol
optical depth: Implementation and application to a dust storm over East Asia. Journal of Geophysical Research, 116, D23206. https://doi.
org/10.1029/2011JD016159

Malm, W. C., & Hand, J. L. (2007). An examination of the physical and optical properties of aerosols collected in the IMPROVE program.
Atmospheric Environment, 41(16), 3407–3427. https://doi.org/10.1016/j.atmosenv.2006.12.012

McHenry, J. N., Vukovich, J. M., & Hsu, C. N. (2015). Development and implementation of a remote‐sensing and in situ data‐
assimilating version of CMAQ for operational PM2.5 forecasting. Part 1: MODIS aerosol optical depth (AOD) data‐
assimilationdesign and testing. Journal of the Air & Waste Management Association, 65(12), 1395–1412. https://doi.org/10.1080/
10962247.2015.1096862

Mlawer, E. J., Taubman, J. S., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres:
RRTM, a validated correlated–k model for the longwave. Journal of Geophysical Research, 102(D14), 16,663–16,682. https://doi.org/
10.1029/97JD00237

Nolte, C. G., Appel, K. W., Kelly, J. T., Bhave, P. V., Fahey, K. M., Collet, J. L., et al. (2015). Evaluation of the Community Multiscale Air
Quality (CMAQ) model v5.0 against size‐resolved measurements of inorganic particle composition across sites in North America.
Geoscientific Model Development, 8(9), 2877–2892. https://doi.org/10.5194/gmd‐8‐2877‐2015

Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.‐C., & Schwartz, C. S. (2014). Implementation of aerosol assimilation in Gridpoint
Statistical Interpolation (v. 3.2) and WRF‐Chem (v. 3.4.1). Geoscientific Model Development, 7(4), 1621–1627. https://doi.org/10.5194/
gmd‐7‐1621‐2014

Parrish, D. F., & Derber, J. C. (1992). The National Meteorological Center's spectral statistical‐interpolation analysis system. Monthly
Weather Review, 120, 1747–1763.

Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K., Diskin, G. D., et al. (2011). CO source contribution analysis for
California during ARCTAS‐CARB. Atmospheric Chemistry and Physics, 11(15), 7515–7532. https://doi.org/10.5194/acp‐11‐7515‐2011

Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., et al. (2017). The MERRA‐2 aerosol reanalysis,
1980 onward. Part I: System description and data assimilation evaluation. Journal of Climate, 30(17), 6823–6850. https://doi.org/
10.1175/JCLI‐D‐16‐0609.1

Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J. D., & Houyoux, M. (2009). Emissions inventory of PM2.5 trace
elements across the United States. Environmental Science & Technology, 43(15), 5790–5796. https://doi.org/10.1021/es802930x

Remer, L. A., Kaufman, Y., Tanré, D., Mattoo, S., Chu, D., Mar‐ tins, J. V., et al. (2005). The MODIS aerosol algorithm, products, and
validation. Journal of the Atmospheric Sciences, 62(4), 947–973. https://doi.org/10.1175/JAS3385.1

Rienecker, M., Suarez, M., Todling, R., Bacmeister, J., Takacs, L., Liu, H., et al. (2008), The GEOS‐5 data assimilation system:
Documentation of versions 5.0.1, 5.1.0, and 5.2.0, NASA Tech. Memo, 104606.

Russell, A., & Dennis, R. (2000). NARSTO critical review of photochemical models and modeling. Atmospheric Environment, 34,
2283–2324.

Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., & Hyer, E. (2013). Aerosol optical depth assimilation for a
size‐resolved sectional model: Impacts of observationally constrained, multi‐wavelength and fine mode retrievals on regional scale
analyses and forecasts. Atmospheric Chemistry and Physics, 13(20), 10,425–10,444. https://doi.org/10.5194/acp‐13‐10425‐2013

Saide, P. E., Carmichael, G. R., Spak, S. N., Minnis, P., & Ayers, J. K. (2012). Improving aerosol distributions below clouds by assimilating
satellite‐retrieved cloud droplet number. Proceedings of the National Academy of Sciences, 109(30), 11,939–11,943. https://doi.org/
10.1073/pnas.1205877109

Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., & Carmichael, G. R. (2014). Assimilation of next generation geostationary aerosol
optical depth retrievals to improve air quality simulations. Geophysical Research Letters, 41, 9188–9196. https://doi.org/10.1002/
2014gl062089

Schwartz, C. S., Liu, Z., Lin, H.‐C., & McKeen, S. A. (2012). Simultaneous three‐dimensional variational assimilation of surface fine par-
ticulate matter and MODIS aerosol optical depth. Journal of Geophysical Research, 117, D13202. https://doi.org/10.1029/2011JD017383

Seidel, D. J., Ao, C. O., & Li, K. (2010). Estimating climatological planetary boundary layer heights from radiosonde observations:
Comparison of methods and uncertainty analysis. Journal of Geophysical Research, 115, D16113. https://doi.org/10.1029/2009JD013680

Semane, N., Peuch, V.‐H., Pradier, S., Desroziers, G., El Amraoui, L., Brousseau, P., et al. (2009). On the extraction of wind information
from the assimilation of ozone profiles in Météo‐France 4‐D‐Var operational NWP suite. Atmospheric Chemistry and Physics, 9(14),
4855–4867. https://doi.org/10.5194/acp‐9‐4855‐2009

Simon, H., & Bhave, P. V. (2012). Simulating the degree of oxidation in atmospheric organic particles. Environmental Science & Technology,
46(1), 331–339. https://doi.org/10.1021/es202361w

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the advanced
research WRF version 2, NCAR Tech. Note, NCAR/TN‐468+STR, Natl. Cent. for Atmos. Res. Boulder, CO: Retrieved from
http://wrf‐model.org/wrfadmin/publications.php, last access: 30 April 2018.

Tang, Y., Lee, P., Tsidulko, M., Huang, H. C., McQueen, J. T., DiMego, G. J., et al. (2009). The impact of lateral boundary con‐ ditions on
CMAQ predictions over the continental United States. Environmental Fluid Mechanics, 9(1), 43–58. https://doi.org/10.1007/s10652‐008‐
9092‐5

10.1029/2018JD029009Journal of Geophysical Research: Atmospheres

KUMAR ET AL. 2772

https://doi.org/10.1016/j.atmosenv.2005.10.069
https://doi.org/10.1016/j.atmosenv.2005.10.069
https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2
https://doi.org/10.5194/gmd-3-257-2010
https://doi.org/10.5194/gmd-3-257-2010
https://doi.org/10.1002/2015JD023298
https://doi.org/10.1175/MWR-D-16-0063.1
https://doi.org/10.1175/WAF-D-15-0163.1
https://doi.org/10.1029/2011JD016159
https://doi.org/10.1029/2011JD016159
https://doi.org/10.1016/j.atmosenv.2006.12.012
https://doi.org/10.1080/10962247.2015.1096862
https://doi.org/10.1080/10962247.2015.1096862
https://doi.org/10.1029/97JD00237
https://doi.org/10.1029/97JD00237
https://doi.org/10.5194/gmd-8-2877-2015
https://doi.org/10.5194/gmd-7-1621-2014
https://doi.org/10.5194/gmd-7-1621-2014
https://doi.org/10.5194/acp-11-7515-2011
https://doi.org/10.1175/JCLI-D-16-0609.1
https://doi.org/10.1175/JCLI-D-16-0609.1
https://doi.org/10.1021/es802930x
https://doi.org/10.1175/JAS3385.1
https://doi.org/10.5194/acp-13-10425-2013
https://doi.org/10.1073/pnas.1205877109
https://doi.org/10.1073/pnas.1205877109
https://doi.org/10.1002/2014gl062089
https://doi.org/10.1002/2014gl062089
https://doi.org/10.1029/2011JD017383
https://doi.org/10.1029/2009JD013680
https://doi.org/10.5194/acp-9-4855-2009
https://doi.org/10.1021/es202361w
http://wrf-model.org/wrfadmin/publications.php
https://doi.org/10.1007/s10652-008-9092-5
https://doi.org/10.1007/s10652-008-9092-5


Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., et al. (2017). A case study of aerosol data assimilation with the Community
Multi‐scale Air Quality Model over the contiguous United States using 3D‐Var and optimal interpolation methods. Geoscientific Model
Development, 10(12), 4743–4758. https://doi.org/10.5194/gmd‐10‐4743‐2017

Tewari, M., Chen, F., Wang,W., Dudhia, J., LeMone, M. A., et al. (2004). Implementation and verification of the united NOAH land surface
model in the WRF model. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction
(pp. 11–15).

Wen, X. J., Balluz, L., & Mokdad, A. (2009). Association between media alerts of air quality index and change of outdoor activity among
adult asthma in six states, BRFSS, 2005. Journal of Community Health, 34(1), 40–46. https://doi.org/10.1007/s10900‐008‐9126‐4

Whitten, G. Z., Heo, G., Kimura, Y., McDonald‐Buller, E., Allen, D. T., Carter, W. L., & Yarwood, G. (2010). A new condensed toluene
mechanism for Carbon Bond: CB05‐TU. Atmospheric Environment, 44(40), 5346–5355. https://doi.org/10.1016/j.atmosenv.2009.12.029

Wu,W.‐S., Purser, R. J., & Parrish, D. F. (2002). Three‐dimensional variational analysis with spatially inhomogeneous covariances.Monthly
Weather Review, 130, 2905–2916.

Zhang, D.–. L., & Anthes, R. A. (1982). A high–resolution model of the planetary boundary layer—Sensitivity tests and comparisons with
SESAME–79 data. Journal of Applied Meteorology, 21(11), 1594–1609. https://doi.org/10.1175/1520‐0450(1982)021<1594:
AHRMOT>2.0.CO;2

10.1029/2018JD029009Journal of Geophysical Research: Atmospheres

KUMAR ET AL. 2773

https://doi.org/10.5194/gmd-10-4743-2017
https://doi.org/10.1007/s10900-008-9126-4
https://doi.org/10.1016/j.atmosenv.2009.12.029
https://doi.org/10.1175/1520-0450(1982)021%3c1594:AHRMOT%3e2.0.CO;2
https://doi.org/10.1175/1520-0450(1982)021%3c1594:AHRMOT%3e2.0.CO;2


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


